
CS 4530: Fundamentals of Software Engineering

Module 11.3 Communication Patterns

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson you should be
able to

• Explain the basic principles of the REST and
WebSocket communication patterns

• Compare the tradeoffs between REST and
WebSockets

• Construct a simple REST server using TSOA

2

WebSocket Basics
• Like the typed-emitter model, but clients may be
remote processes.

• Event-based model. Not a request/response model
• Server maintains stateful connections to all clients
• Clients only know about the server, not other clients
• Server can broadcast to all clients, or push to a single
one

• Client can push to server, server can push to client
• Can use this to implement more complex
communication protocols

4

WebSockets

5

Socket.io provides a useful API for
websockets.
• ”WebSocket” is a low-level standard protocol
• Socket.io provides: automatic reconnection,
broadcast rooms, typed emitters

• Hello world example with Socket.io (creating
client and server not shown):

6

// Server side - when a connection comes in, we are passed a pointer to our side of the client's socket
io.on('connection', (socket) => {
// Register an event listener when we receive a "hello" event from this client
socket.on('hello', (arg) => {
console.log(arg); // Will print 'world'

});
});

// Client side – Once establishing a connection to the server, emit a “hello” event with the argument “world”
socket.emit('hello', 'world');

https://socket.io/docs/v4/tutorial/introduction

Socket.IO uses the Typed Emitter Pattern

7

export type CoveyTownSocket = Socket<ServerToClientEvents, ClientToServerEvents>;
export interface ServerToClientEvents {

playerMoved: (movedPlayer: Player) => void;
playerDisconnect: (disconnectedPlayer: Player) => void;
playerJoined: (newPlayer: Player) => void;
initialize: (initialData: TownJoinResponse) => void;
townSettingsUpdated: (update: TownSettingsUpdate) => void;
townClosing: () => void;
chatMessage: (message: ChatMessage) => void;
interactableUpdate: (interactable: Interactable) => void;
commandResponse: (response: InteractableCommandResponse) => void;

}

export interface ClientToServerEvents {
chatMessage: (message: ChatMessage) => void;
playerMovement: (movementData: PlayerLocation) => void;
interactableUpdate: (update: Interactable) => void;
interactableCommand: (command: InteractableCommand & InteractableCommandBase) => void;

}

CoveyTownSocket.d.ts

Listen for and emit events on client and
server

8

//Client-side: register a listener for a “playerDisconnect” event
this._socket.on('playerDisconnect', disconnectedPlayer => {
this._players = this.players.filter(eachPlayer => eachPlayer.id !== disconnectedPlayer.id);

});

//Client-side: emit a chat message
public emitChatMessage(message: ChatMessage) {
this._socket.emit('chatMessage', message);

}

frontend/…/TownController.ts

// Server-side, register a listener for “chatMessage” from a single player’s socket.
After receiving it, emit a chat message to every player in the town
socket.on('chatMessage', (message: ChatMessage) => {
this._broadcastEmitter.emit('chatMessage', message);
this._chatMessages.push(message);
if (this._chatMessages.length > 200) {
this._chatMessages.shift();

}
});

townService/…/ Towns.ts

REST Can Implement Pull Pattern

9

In REST, client can also push to server

10

POST /cities

Acknowledgement

Compare REST and Web Sockets

11

REST Web Sockets

REST Principles
• Single Server - As far as the client
knows, there’s just one

• Stateless - Each request contains enough
information that a different server could
process it

• Uniform Interface - Standard way to
specify interface

External
Cache

Web
Servers

App
Servers

Database
servers

Internal
Cache

Misc
Services

Clients

Client sees none
of this!

Uniform Interface: URIs are nouns
• In a RESTful system, the server is
visualized as a store of named resources
(nouns), each of which has some data
associated with it.

• A URI is a name for such a resource.

15

Examples
• Examples:

• /cities/losangeles
• /transcripts/00345/graduate (student

00345 has several transcripts in the system;
this is the graduate one)

• Anti-examples:
• /getCity/losangeles
• /getCitybyID/50654
• /Cities.php?id=50654

16

Useful heuristic: if you
were keeping this data in
a bunch of files, what
would the directory
structure look like?
But you don't have to
actually keep the data in
that way.

We prefer plural nouns for
toplevel resources, as you
see here.

Path parameters specify portions of the path
to the resource
For example, your REST protocol might allow a path like

/transcripts/00345/graduate

In a REST protocol, this API might be described as

/transcripts/:studentid/graduate

:studentid is a path parameter, which is replaced by the value
of the parameter

17

Query parameters allow named parameters
Example:
/transcripts/graduate?lastname=covey&firstname=avery

These are typically used to specify more flexible queries,
or to embed information about the sender’s state, eg

https://calendar.google.com/calendar/u/0/r/month/2023/
2/1?tab=mc&pli=1

This URI combines path parameters for the month and
date, and query parameters for the format (tab and pli).

18

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1

You can also put parameters in the body.
• You can put additional parameters or information in the

body, using any coding that you like. (We’ll usually use
JSON)

• You can also put parameters in the headers.
• TSOA gives tools for extracting all of these parameters
• Choose where to put parameters based on
readability/copyability:

• Path parameters provide a link to a resource
• Query parameters modify how that resource is

viewed/acted upon
• Headers are transparent to users
• Body parameters have unrestricted length

19

Uniform Interface:
Verbs are represented as http methods
• In REST, there are exactly four things
you can do with a resource

• POST: requests that the server create a
resource with a given value.

• GET: requests that the server respond
with a representation of the resource

• PUT: requests that the server replace the
value of the resource by the given value

• DELETE: requests that the server delete
the resource

Example interface #1: a todo-list manager
• Resource: /todos

• GET /todos - get list all of my todo items
• POST /todos - create a new todo item (data

in body; returns ID number of the new item)
• Resource: /todos/:todoItemID

• :todoItemID is a path parameter
• GET /todos/:todoItemID - fetch a single item

by id
• PUT /todos/:todoItemID - update a single

item (new data in body)
• DELETE /todos/:todoItemID - delete a single

item

Example interface #2: the transcript database
POST /transcripts
 -- adds a new student to the database,
 -- returns an ID for this student.
 -- requires a body parameter 'name', url-encoded (eg name=avery)
 -- Multiple students may have the same name.
GET /transcripts/:ID
 -- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID
 -- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber
 -- adds an entry in this student's transcript with given name and course.
 -- Requires a body parameter 'grade'.
 -- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber
 -- returns the student's grade in the specified course.
 -- Fails if student or course is missing.
GET /studentids?name=string
 -- returns list of IDs for student with the given name

Remember the heuristic:
if you were keeping this
data in a bunch of files,
what would the directory
structure look like?

Didn't seem to fit
the model, sorry

It would be better to have a machine-
readable specification
• The specification of the transcript API on
the last slide is RESTful, but is not
machine-readable

• A machine-readable specification is
useful for:
• Automatically generating client and server

boilerplate, documentation, examples
• Tracking how an API evolves over time
• Ensuring that there are no misunderstandings

OpenAPI is a machine-readable specification
language for REST
• Written in YAML
• Not really convenient
for human use

• Better: use a tool!

/towns/{townID}/viewingArea:
post:
 operationId: CreateViewingArea
responses:
 '204':
description: No content
'400':
description: Invalid values specified
content:
 application/json:
schema:
 $ref: '#/components/schemas/InvalidParametersError'
description: Creates a viewing area in a given town
tags:
 - towns
security: []
parameters:
 - description: ID of the town in which to create the new viewing area
in: path
name: townID
required: true
schema:
 type: string
 - description: |-
 session token of the player making the request, must
match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true
schema:
 type: string
requestBody:
 description: The new viewing area to create
required: true
content:
 application/json:
schema:
 $ref: '#/components/schemas/ViewingArea'
description: The new viewing area to create

TSOA uses TS annotations to generate all
the needed pieces

25

Running server
code

OpenAPI
documentation

Typescript with
@Annotations

Readable HTML
documentation

(Swagger)

Sample annotated typescript (1)
@Route('towns')
export class TownsController extends Controller {

/**
 * Creates a viewing area in a given town
 *
 * @param townID ID of the town in which to create the new viewing area
 * @param sessionToken session token of the player making the request, must
 * match the session token returned when the player joined the town
 * @param requestBody The new viewing area to create
 *
 * @throws InvalidParametersError if the session token is not valid, or if the
 * viewing area could not be created
 */
@Post('{townID}/viewingArea')
@Response<InvalidParametersError>(400, 'Invalid values specified')
public async createViewingArea(
 @Path() townID: string,
 @Header('X-Session-Token') sessionToken: string,
 @Body() requestBody: ViewingArea,
){ /** method body goes here */ }

This class defines
methods that can be
invoked on the base

route /towns

This method can be invoked by making a
POST request to

/towns/{townID}/viewingArea - where
/towns was the base route for the class.

{townID} is a path parameter

In the event of an InvalidParametersError, the
HTTP response will have the error status code

“400”

Sample annotated typescript (2)
@Route('towns')
export class TownsController extends Controller {

/**
 * Creates a viewing area in a given town
 *
 * @param townID ID of the town in which to create the new viewing area
 * @param sessionToken session token of the player making the request, must
 * match the session token returned when the player joined the town
 * @param requestBody The new viewing area to create
 *
 * @throws InvalidParametersError if the session token is not valid, or if the
 * viewing area could not be created
 */
@Post('{townID}/viewingArea')
@Response<InvalidParametersError>(400, 'Invalid values specified')
public async createViewingArea(
 @Path() townID: string,
 @Header('X-Session-Token') sessionToken: string,
 @Body() requestBody: ViewingArea,
){ /** method body goes here */ }

This class defines
methods that can be
invoked on the base

route /towns

This method can be invoked by making a
POST request to

/towns/{townID}/viewingArea - where
/towns was the base route for the class.

{townID} is a path parameter The townID parameter to the method
will come from the corresponding Path

parameter of the URI.

The “sessionToken” parameter will come from
an HTTP header called “X-Session-Token”

The requestBody parameter will come
from the body of the HTTP request

Sample generated HTML (“Swagger”)

Swagger in the wild

31

Learning Goals for this Lesson
• At the end of this lesson you should be
able to

• Explain the basic principles of the REST and
WebSocket communication patterns

• Compare the tradeoffs between REST and
WebSockets

• Construct a simple REST server using TSOA

33

	CS 4530: Fundamentals of Software Engineering��Module 11.3 Communication Patterns
	Learning Goals for this Lesson
	WebSocket Basics
	WebSockets
	Socket.io provides a useful API for websockets.
	Socket.IO uses the Typed Emitter Pattern
	Listen for and emit events on client and server
	REST Can Implement Pull Pattern
	In REST, client can also push to server
	Compare REST and Web Sockets
	REST Principles
	Uniform Interface: URIs are nouns
	Examples
	Path parameters specify portions of the path to the resource
	Query parameters allow named parameters
	You can also put parameters in the body.
	Uniform Interface:�Verbs are represented as http methods
	Example interface #1: a todo-list manager
	Example interface #2: the transcript database
	It would be better to have a machine-readable specification
	OpenAPI is a machine-readable specification language for REST
	TSOA uses TS annotations to generate all the needed pieces
	Sample annotated typescript (1)
	Sample annotated typescript (2)
	Sample generated HTML (“Swagger”)
	Swagger in the wild
	Learning Goals for this Lesson

